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Abstract
The classical theory of Riemann ellipsoids is formulated naturally as a gauge
theory based on a principalG-bundle P . The structure groupG = SO(3) is the
vorticity group, and the bundle P = GL+(3,R) is the connected component
of the general linear group. The base manifold is the space of positive-definite
real 3×3 symmetric matrices, identified geometrically with the space of inertia
ellipsoids. The angular momentum is not the only conserved quantity. The
Kelvin circulation is also conserved as a consequence of gauge invariance. The
bundle P is a Riemannian manifold whose metric is determined by the kinetic
energy. Nonholonomic constraints determine connexions on the bundle. In
particular, the trivial connexion corresponds to rigid body motion, the natural
Riemannian connexion to irrotational flow, and the invariant connexion to the
falling cat.

PACS numbers: 4550P, 9510C, 2160F, 0240

1. Introduction

This Letter formulates the classical theory of Riemann ellipsoids as a gauge theory. In the usual
gauge method for isolated mechanical systems, the structure group is the rotation group, and
the gauge conserved quantity is the angular momentum [1–6]. The gauge theory of Riemann
ellipsoids is a fundamentally different model with the vorticity group as the structure group
and the Kelvin circulation as a gauge-conserved quantity in addition to the angular momentum.

As defined by Dirichlet [7] and Riemann [8] in 1860, a Riemann ellipsoid is a self-
gravitating, constant mass-density fluid with an ellipsoidal boundary and with a velocity field
that is a linear function of the Cartesian position coordinates in an inertial centre-of-mass
frame. The classical theory of the equilibrium and stability of rotating Riemann ellipsoids was
clarified by Lebovitz [9] and Chandrasekhar [10] a century later and applied to the description
of astrophysical systems [11–15] and gaseous plasmas [16].

With minor modifications, Riemann ellipsoid theory may be applied to fluids whose
density is not uniform and to discrete systems of particles. Rapidly rotating atomic nuclei
may be modelled as Riemann ellipsoids when the gravitational self-energy is replaced by the
sum of the repulsive Coulomb self-energy among the protons and an attractive surface energy
that approximates the strong interactions among the nucleons [17, 18]. There is a quantum
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mechanical mean field theory of Riemann ellipsoids [19–21]. The equations of motion form
a Hamiltonian dynamical system [22] and a finite-dimensional Lax system [23].

Because the velocity field is assumed linear, the Riemann ellipsoid configuration space is
the connected component of the general linear group

P = GL+(3,R) = {ξ ∈ M3(R) | det ξ > 0}. (1)

The space of all inertia ellipsoids is identified with the manifold Q of all positive-definite real
symmetric matrices. The relationship between P and Q is given by the surjective mapping π :

P π−→ Q

ξ 	−→ q = ξξ t .
(2)

The group P acts on itself by multiplication on the left or on the right. These are two
different geometrical transformations with distinct physical interpretations. For example, left
multiplication of elements ξ ∈ P by elements r of the subgroup SO(3), ξ 	−→ Lrξ = rξ

corresponds to physical rotations. In contrast, right multiplication ξ 	−→ Rgξ = ξg−1 by
g ∈ G = SO(3) corresponds to vortex motion. The difference in interpretation originates in
the distinct induced group actions on the ellipsoidal space. With respect to left multiplication
by the rotation group element r ∈ SO(3), an ellipsoid with inertia tensor q = π(ξ) is
transformed into a rotated ellipsoid with inertia tensor π(Lrξ) = rξξ t rt = rqrt . But right
multiplication by the vorticity group element g ∈ G leaves the inertia ellipsoid invariant,
π(Rgξ) = ξg−1gξ t = q, since g−1 = gt , or

π ◦ Rg = π for all g ∈ G. (3)

The projection π is right invariant with respect to the groupG. Hence, the configuration space
P is a principal fibre bundle over the base manifold Q with structure group G [24, 25].

This letter shows that the classical theory of Riemann ellipsoids is expressed naturally in
terms of the differential geometry of the bundle P . A connexion, or differential geometric
structure, on the bundle P is physically equivalent to a nonholonomic constraint on the vortex
velocity field. The nonholonomic constraints to irrotational flow and the ‘falling cat’ problem
correspond to the Riemannian connexion and the invariant connexion, respectively. Littlejohn
and Reinsch [26] reviewed the relationship between gauge theory and traditional physics
approaches to nonholonomic constraints, especially in atomic and molecular science, while
Massa and Pagani [27] and Bates and Sniatycki [28] provide mathematical overviews of the
nonholonomic problem.

2. Kinematics

The kinematics of Riemann ellipsoids in the gauge formalism is obtained by certain local
trivializations of the bundle P , which separate the degrees of freedom into rotational,
vibrational and vortex components. Every group element ξ ∈ P can be expressed as a product
of three matrices, ξ = RtAS, where R, S are real orthogonal matrices and A is a diagonal
matrix with real positive entries in descending order. The projection q = π(ξ) = RtA2R

in the ellipsoidal space of a bundle point ξ shows that the entries of the square of A are the
eigenvalues of q and R is an orthogonal matrix that diagonalizes q. Physically R rotates the
body into the principal axis frame, and the entries ofA are the lengths of the inertia ellipsoid’s
principal axes. Because eigenvalues are unique, the diagonal matrix A is determined uniquely
by q. The eigenspaces are also uniquely defined by q. If the eigenvalues are distinct, the
eigenspaces are one dimensional and each row of R is unique up to a sign. Thus, when
restricted to suitable open neighbourhoods, the matrices R and A provide a local coordinate
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chart for the ellipsoidal space Q. Once R and A are determined by the local chart for the
base manifold Q, the orthogonal matrix S in the structure group is given uniquely. A unique
decomposition ξ = RtAS, or ξ = (q; S) for q = RtA2R and S = A−1Rξ , in an open
neighbourhood of P is a local trivialization of the bundle P . The bundle P is only locally
diffeomorphic to the Cartesian product of the base manifold Q and the structure group G.

With respect to left multiplication by elements r in the rotation group, the bundle point
ξ = RtAS is transformed to Lrξ = (R rt )tA S, or a rotation r is equivalent to right
multiplication of the elements R of the subgroup SO(3). With respect to right multiplication
by elements g in the structure group, the bundle point ξ = RtAS is transformed to
Rgξ = RtA(Sg−1), or a gauge transformation g is equivalent to right multiplication of the
elements S of the subgroup G.

2.1. Tangent space

Consider a curve t 	−→ ξ(t) in the bundle P . Such a curve may be identified with the collective
motion of a many-body system for which the trajectory of each particle α is constrained by
xα(t) = ξ(t)yα , where yα is independent of time. The reference particle distribution yα is
chosen so that its dimensionless inertia tensor is the identity matrix. With this choice the
instantaneous inertia tensor of the many-body system simplifies to q(t) = ξξ t .

The velocity vector for each particle is vα = ξ̇ yα = uxα for u = ξ̇ ξ−1 and ξ̇ = dξ/dt .
Note that vα is a linear function of its position vector xα . The velocity vector may be expressed
as the value of a right-invariant vector field on the group P at the point ξ ,

V (t) =
∑
ij

(ξ̇ ξ−1 · ξ)ij ∂

∂ξij
= −(Ru)ξ . (4)

With respect to a local trivialization, the curve is t 	−→ R(t)tA(t) S(t). At each time t ,
define the antisymmetric matrix�(t) = ṘRt in the Lie algebra so(3) of the rotation group and
the antisymmetric matrix �(t) = ṠSt in the Lie algebra g of the structure group. A basis for
the space of 3 × 3 antisymmetric matrices is given by ei for i = 1, 2, 3, where (ei)jk ≡ εijk .
The matrix � determines the angular velocity vector ω, and �—the vortex velocity vector λ:

� =
∑
i

ωiei � =
∑
i

λiei . (5)

For such a local trivialization, the velocity of the curve in the bundle can be shown to be a sum
of rotational, vibrational and vortex terms,

V (t) = −(R�)R +
∑
i

ȧi

(
∂

∂ai

)
A

− (R�)S

=
∑
i

(
−ωi

(
Rei

)
R

+ ȧi

(
∂

∂ai

)
A

− λi
(
Rei

)
S

)
. (6)

The velocity vector may be expressed alternatively as a sum of right-invariant vector fields on
the bundle P by using the identities,

(RRt�R)ξ = −(R�)R = (�R)ij

(
∂

∂Rij

)
R

(RRtA−1ȦR)ξ = −ȧi
(
∂

∂ai

)
A

(RRtA�A−1R)ξ = (R�)S = −(�S)ij
(

∂

∂Sij

)
S

(7)

when ξ = RtAS. Here (R�)R denotes a right-invariant vector field on SO(3) and (R�)S
denotes a right-invariant vector field on G.
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2.2. Riemannian structure

For X, Y in M3(R), define the metric at the point ξ ∈ P by

gξ ((RX)ξ , (RY )ξ ) = tr(X(ξξ t )Y t ). (8)

This is a positive-definite bilinear form defined on each tangent space of P so that the bundle
is a Riemannian manifold. The kinetic energy is proportional to the squared length of the
velocity

K = (I/8) gξ (V (t), V (t)) (9)

where I is a constant with the units of the moment of inertia. Expanding the velocity into the
three types of motion, equation (6), the kinetic energy becomes

K = (I/4) ( − tr(A2�2) + tr(Ȧ2)− tr(A2�2) + 2 tr(�A�A)
)
. (10)

The last term is due to Coriolis coupling between the rotational and vortex degrees of freedom.
The derivatives of the kinetic energy with respect to the angular velocity and vortex velocity
are the vectors of angular momentum and circulation, respectively,

Lk = ∂K

∂ωk
= (I/2) [(a2

i + a2
j )ωk − 2aiajλk] (11)

Ck = − ∂K

∂λk
= (I/2) [2aiajωk − (a2

i + a2
j )λk] (12)

where i, j, k are cyclic.
The equations of motion are found using the Lagrangian formalism [18, 29]. Suppose

that the potential energy V (A) is a smooth function of the principal axes lengths. Then the
potential is left- and right-invariant with respect to the rotation group and the structure group,
respectively. But the metric, and hence the kinetic energy, is also left- and right-invariant with
respect to the rotation and structure groups. Since the Lagrangian is the difference between
the kinetic and potential energies, the two invariances, according to Noether’s theorem, imply
conservation laws. These are the angular momentum and Kelvin circulation. In the rotating
body-fixed frame, the angular momentum and Kelvin circulation vectors precess:

dL

dt
= −ω × L and

dC

dt
= −λ × C. (13)

The two vector conservation laws in the inertial centre-of-mass frame are
d

dt

(
Rt L

) = 0 and
d

dt

(
St C

) = 0. (14)

3. Connexions on the Riemann ellipsoid bundle

For many mechanical systems, there are constraint forces in addition to those described by
the potential energy V (A). The simplest case is the rigid body for which the vortex velocity
vanishes, λ = 0. This is a holonomic constraint which reduces the configuration space to
Q ∼= P/G. But constraints are not typically holonomic. For example, an irrotational fluid
(like a water droplet) has zero circulation, C = 0. Another example is the ‘falling cat’ [30,31],
for which the angular momentum vanishes, L = 0. In these cases the vortex velocity is
proportional to the angular velocity [10]

λk

ωk
=




2aiaj
a2
i + a2

j

irrotational flow

a2
i + a2

j

2aiaj
falling cat

(15)
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where i, j, k are cyclic. A nonholonomic constraint for a Riemann ellipsoid is a proportionality
between the vortex and angular velocity components, λk = fk(A)ωk with a factor fk(A) that
depends on the axes lengths. This proportionality is equivalent to a connexion on the bundle P ,
as it will be shown next.

For each point ξ in the bundle, denote the tangent space by TξP . By definition, the vertical
space Vξ is the subspace of TξP consisting of the tangents to curves in the fibre G,

Vξ = {
X ∈ TξP | π∗X = 0

}
. (16)

If � ∈ g is a Lie algebra element, then the fundamental vector field, denoted by �∗, is the
left invariant vector field on the fibre G. A basis for Vξ is the set of fundamental vector fields
{e∗
a, a = 1, 2, 3}, where (ea)bc = εabc.

A connexion [25] is a smooth assignment of a horizontal subspaceHξ of the tangent space
TξP to each point ξ ∈ P such that

(1) TξP = Hξ ⊕ Vξ (17)

(2) Hξ ·g = (Rg)∗Hξ . (18)

Because the kernel of π∗ at ξ ∈ P is the vertical subspace Vξ , its image is TqQ, and the tangent
space TξP is a direct sum of vertical and horizontal subspaces, the linear transformation π∗
is an isomorphism from the horizontal subspace onto the tangent space of the base manifold
π∗ : Hξ −→ TqQ, where q = π(ξ). If T ∈ TqQ is a tangent vector to the base manifold, then
its horizontal lift is the unique horizontal vector T̃ ∈ Hξ such thatπ∗T̃ = T . Given any basis of
smooth vector fields in an open neighbourhood of the base manifold, {fm,m = 1, . . . , dimQ},
their unique horizontal lifts are denoted by {Fm,m = 1, . . . , dimQ}. The set {(Fm)ξ } is a
basis for the horizontal subspace Hξ and

(Fm)ξ = (fm)q −
∑
a

-am(ξ)(e
∗
a)S (19)

where, in a local trivialization, ξ = (q; S), and the coefficients -am are smooth real-valued
functions on the bundle P .

The second defining property of a connexion, equation (18), asserts that (Fm)ξ ·g =
(Rg)∗(Fm)ξ . In particular, when ξ = (q; I ), where I is the structure group identity and
g = S−1 ∈ G, the right translation of a horizontal basis vector at the structure group identity
is

(Fm)(q;S) = (RS−1)∗(Fm)(q;I )
= (fm)q −

∑
a

-ai (q; I )(AdS−1ea)
∗
S

= (fm)q +
∑
a

-am(q)(Rea )S. (20)

The functions -am(q) ≡ -am(q; I ) are the Christoffel symbols.
Consider now a basis {(fm)q,m = 1, . . . , 6} for the tangent space at q ∈ Q that consists

of the three right-invariant vector fields (Rei )R on the rotation group SO(3) and the three
vibrational vector fields (∂/∂ai)A. A tangent vector to a curve in the base manifold is

T (t) =
3∑
i=1

( − ωi (Rei )R + ȧi (∂/∂ai)A
)
. (21)

The curve’s lift to the bundle is required to have the tangent V (t) of equation (6),

V (t) = −
3∑
i=1

ωi

(
(Rei )R +

λi

ωi
(Rei )S

)
+

3∑
i=1

ȧi (∂/∂ai)A. (22)
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The lift is horizontal if and only if Hξ is spanned by

Fi = (Rei )R +

(
λi

ωi

)
(Rei )S (23)

Fi+3 = ∂

∂ai
(24)

for i = 1, 2, 3. The Riemann ellipsoid Christoffel symbols vanish for the vibrational vectors
and simplify to a diagonal form for the rotational vectors

-ai (q) = δai

(
λi

ωi

)
. (25)

In particular, the special rotational modes correspond to the following Christoffel symbols:

-kk =



0 rigid
2aiaj /(a

2
i + a2

j ) irrotational

(a2
i + a2

j )/(2aiaj ) falling cat
(26)

where i, j, k are cyclic. The Christoffel symbols are just functions of the axis lengths due to
rotational invariance of the horizontal subspace, (Lr)∗Hξ = Hrξ .

3.1. Riemannian connexion

The horizontal subspace H IF
ξ for irrotational flow is defined as the orthogonal complement to

the vertical subspace Vξ . Denote the vector space of all 3 × 3 symmetric matrices by m. The
orthogonal complement V ⊥

ξ is given explicitly by

H IF
ξ = {

(RY )ξ ∈ TξP | Y ∈ m
}
. (27)

To prove this, suppose (R�)S , � ∈ g, is a vertical vector and (RY )ξ , Y ∈ m, is a horizontal
vector. These two vectors are orthogonal,

gξ ((R�)S, (RY )ξ ) = gξ ((RRtA�A−1R)ξ , (RY )ξ )

= tr
(
RtA�A−1R(ξξ t )Y t

)
= tr

(
RtA�ARY

)
= − tr

(
Y tRtA�AR

)
= 0. (28)

Since the sums of the dimensions of the vertical space and the horizontal space add up to the
dimension of the tangent space TξP , the tangent space is a direct sum of the horizontal and
vertical subspaces. If (RY )ξ is a horizontal vector and g ∈ G, then right invariance implies

(Rg)∗(RY )ξ = (RY )ξg−1 (29)

or (Rg)∗H IF
ξ = H IF

ξg−1 . Since the assignment of the horizontal subspace H IF
ξ is also smooth, it

defines a connexion on P .
The vibrational vectors are horizontal since Y = RtA−1ȦR is a symmetric matrix. But

the rotational vectors are not horizontal because

gξ ((Rei )R, (Reb )S) = tr
(
AeiAeb

) = −2δibajak �= 0 (30)

for i, j, k cyclic. Note that the inner product of two vertical vectors is also nonzero,

gξ ((Rea )S, (Reb )S) = − tr
(
A2eaeb

) = δab(a
2
j + a2

k ) (31)
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for a, j, k cyclic. In order for (Fi )ξ to be the horizontal lift of (Rei )R , it is necessary and
sufficient that, for b = 1, 2, 3,

0 = gξ ((Fi )ξ , (Reb )S)

= gξ ((Rei )R + -ai (q)(Rea )S, (Reb )S)

= −2δibajak + -bi (q)(a
2
j + a2

k ). (32)

The off-diagonal Christoffels for the rotational vectors vanish, and the diagonal values are

-ii (q) = 2ajak
(a2
j + a2

k )
(i, j, k cyclic). (33)

Thus, the Riemannian connexion for which the horizontal space is perpendicular to the vertical
space corresponds to irrotational flow.

3.2. Invariant connexion

The falling cat connexion is the invariant connexion on the Lie group P . Since g is the algebra
of antisymmetric matrices and m is the vector space of symmetric matrices, the Lie algebra of
the group P is a direct sum of vector spaces,M3(R) = g⊕m. Moreover the vector space m is
invariant with respect to the adjoint group transformation, Adg(m) ⊂ m for all g ∈ G. These
two properties of m are necessary and sufficient for

H FC
ξ = {

(LY )ξ = −(RAdξY )ξ ∈ TξP | Y ∈ m
}

(34)

to be a horizontal subspace [25]. In order to see that, note that the vertical vectors can be
expressed in left-invariant form,

Vξ = {
(R�)S = −(LSt�S)ξ ∈ TξP | � ∈ g

}
. (35)

The tangent space to the bundle at ξ is a direct sum of the horizontal and vertical subspaces,
because every matrix is a linear combination of a symmetric matrix Y and an antisymmetric
matrix St�S. The right invariance of the horizontal subspaces is a consequence of

(Rg)∗(RAdξY )ξ = (RAdξY )ξg−1 = (RAd
ξg−1AdgY )ξg−1 ∈ H FC

ξg−1 (36)

since AdgY ∈ m for all g ∈ G and Y ∈ m. The assignment of the subspaces is smooth, so
H FC
ξ is indeed a horizontal subspace.

The relation

ȧi

(
∂

∂ai

)
A

= −(RRtA−1ȦR)ξ = (LStA−1ȦS)ξ (37)

shows that the vibrational vectors are horizontal (StA−1ȦS is symmetric), but the rotational
vectors are not horizontal since

(Rei )R = −(RRt eiR)ξ = (LStA−1eiAS)ξ (38)

and StA−1eiAS is not symmetric. If the matrix StA−1eiAS is expressed as a sum of
symmetric Xs and antisymmetric Xa parts, i.e. Xs = (StA−1eiAS − StAeiA

−1S)/2,
Xa = (StA−1eiAS + StAeiA−1S)/2, the angular momentum may be written as a sum of
horizontal and vertical vectors:

(Rei )R = (LXs)ξ + (LXa )ξ ∈ H FC
ξ ⊕ Vξ . (39)

The horizontal lifts of the angular momentum vectors are

(Fi )ξ = (Rei )R + -ai (q)(Rea )S

= (LXs)ξ +
[
(LXa )ξ − -ai (q)(LSt eaS)ξ

]
(40)
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where (LXs)ξ is the horizontal lift and the two vertical vectors in the square brackets must
cancel. Therefore, the invariant connexion is given by

-ai (q)ea = (A−1eiA + AeiA
−1)/2 (41)

or the Christoffel symbols are diagonal and

-ii (q) = (a2
j + a2

k )

2ajak
(42)

where i, j, k are cyclic.

3.3. Dedekind’s theorem

The geometrical relationship between the Riemannian and invariant connexions is equivalent
to Dedekind’s theorem, which relates irrotational flow to falling cat solutions [10]. Define the
Dedekind involution f : P → P as the matrix transpose, f (ξ) = ξ t . In a local trivialization,
ξ = RtAS, the Dedekind map interchanges R and S. It also interchanges the angular velocity
� and the vortex velocity �.

The differential f∗ : TξP → TξtP of the Dedekind involution maps a right-invariant
vectorfield into a left-invariant one, f∗(RY )ξ = −(LY t )ξ t . Hence f∗ is a vector space
isomorphism from the irrotational flow horizontal subspace at ξ onto the falling cat horizontal
subspace at ξ t ,

f∗ : H IF
ξ −→ H FC

ξ t . (43)

The Riemannian metric is Dedekind invariant,

gξ t (f∗(RX)ξ , f∗(RY )ξ ) = gξ ((RX)ξ , (RY )ξ ) (44)

because f∗(RX)ξ = (RAdξt X
t )ξ t . When the potential V = V (A) is a pure function of

the axis lengths, then the Lagrangian L = K − V is invariant. Therefore, the Dedekind
involution transforms solutions of Lagrange’s equations into other solutions, known as the
adjoint solutions. If a solution is constrained to irrotational flow, then the Dedekind involution
maps it into a falling cat solution, and vice versa.

4. Conclusions

The concept of a horizontal lift is physically natural. It says that a many-body system responds
to rotations and vibrations (described by a curve γ in the base manifold) by internal vortex
motions (described by a horizontally-lifted curve γ̃ in the bundle). This response is determined
typically by a nonholonomic constraint that depends ultimately on the nature of the forces
between the particles. The constraint that the tangent to the lifted curve lies in a horizontal
subspace is equivalent to a bundle connexion.

The connexions corresponding to rigid rotation, irrotational flow, and the falling cat were
shown to be natural geometrical or group-theoretical concepts. Although not mathematically
natural, other choices of Christoffel symbols define nonholonomic constraint forces that are
not excluded by physical law. For example, the S-type Riemann ellipsoids are a sequence of
special case solutions for which the angular momentum, Kelvin circulation, and the angular
and vortex velocity vectors are aligned with a principal axis, say the 1-axis [9, 10]. This
sequence is indexed by a continuous real parameter f restricted to the interval −2 � f � 0.
There is only one horizontal lift to consider and the Christoffel symbol is given by

-1
1(q) = − f a2a3

(a2
2 + a2

3)
. (45)
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At f = 0, the connexion yields rigid rotation, and, at f = −2, it is irrotational flow. The S-
type ellipsoids are the simplest models that allow for a continuous interpolation between rigid
rotation and irrotational flow. This connexion has no natural geometrical or group-theoretic
significance—but it does model a variety of rotating physical systems.

An unsolved basic science problem is to determine the connexion from the interactions
among the particles that form a rotating system. A complete theory of collective rotation
requires equations that incorporate these interactions into the gauge theory and whose unique
solution are the Christoffel symbols. They must involve a coordinate independent object and
the curvature form is the obvious candidate. The Bianchi identity partially determines the
Christoffel symbols, but it is not sufficient. There must be another equation that relates the
bundle curvature to the microscopic physics.

The stability of equilibrium solutions is a major part of the theory of Riemann
ellipsoids [32]. This classical theory might be revisited in the geometrical setting of gauge
theory using modern methods [33, 34].

The author would like to thank the Institute of Nuclear Physics and the organizers, J Ginocchio
and F Iachello, of the programme entitled, ‘Algebraic Methods in Many-Body Physics’, for
their support. Valuable discussions with J Bryan, Ts Dankova, E Ihrig and J Troupe contributed
intellectually to this work.
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